基数排序(Radix Sort)是一种非比较型的排序算法,它通过逐位比较元素的每一位(从最低位到最高位)来实现排序。基数排序的核心思想是将整数按位数切割成不同的数字,然后按每个位数分别进行排序。基数排序的时间复杂度为 O(n * k),其中 n 是列表长度,k 是最大数字的位数。

算法步骤:

  1. 确定最大位数:找到列表中最大数字的位数,确定需要排序的轮数。

  2. 按位排序:从最低位开始,依次对每一位进行排序(通常使用计数排序或桶排序作为子排序算法)。

  3. 合并结果:每一轮排序后,更新列表的顺序,直到所有位数排序完成。

1. 基数排序 vs 计数排序 vs 桶排序

基数排序有两种方法:

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

  • 基数排序:根据键值的每位数字来分配桶;
  • 计数排序:每个桶只存储单一键值;
  • 桶排序:每个桶存储一定范围的数值;

2. LSD 基数排序动图演示

假设有一个待排序的列表 [170, 45, 75, 90, 802, 24, 2, 66],基数排序的过程如下:

  1. 确定最大位数

    • 最大数字是 802,有 3 位数,因此需要 3 轮排序。

  2. 第一轮(按个位数排序)

    • 使用计数排序对个位数进行排序:

      • 个位数统计:[0, 2, 4, 5, 6, 0, 2, 6]

      • 排序后列表:[170, 90, 802, 2, 24, 45, 75, 66]

  3. 第二轮(按十位数排序)

    • 使用计数排序对十位数进行排序:

      • 十位数统计:[7, 9, 0, 0, 2, 4, 7, 6]

      • 排序后列表:[802, 2, 24, 45, 66, 170, 75, 90]

  4. 第三轮(按百位数排序)

    • 使用计数排序对百位数进行排序:

      • 百位数统计:[8, 0, 0, 0, 1, 0, 0, 0]

      • 排序后列表:[2, 24, 45, 66, 75, 90, 170, 802]

  5. 最终结果

    • 列表完全有序:[2, 24, 45, 66, 75, 90, 170, 802]

实例

def counting_sort(arr, exp):
    n = len(arr)
    output = [0] * n  # 初始化输出数组
    count = [0] * 10  # 初始化计数数组

    # 统计每个数字的出现次数
    for num in arr:
        index = (num // exp) % 10
        count[index] += 1

    # 累加计数数组,得到每个数字的最终位置
    for i in range(1, 10):
        count[i] += count[i - 1]

    # 将元素放入输出数组
    i = n - 1
    while i >= 0:
        index = (arr[i] // exp) % 10
        output[count[index] - 1] = arr[i]
        count[index] -= 1
        i -= 1

    # 将输出数组复制到原始数组
    for i in range(n):
        arr[i] = output[i]

def radix_sort(arr):
    # 找到最大数字的位数
    max_num = max(arr)
    exp = 1  # 从个位数开始
    while max_num // exp > 0:
        counting_sort(arr, exp)  # 对当前位数进行计数排序
        exp *= 10  # 移动到下一位
    return arr

# 示例
arr = [170, 45, 75, 90, 802, 24, 2, 66]
sorted_arr = radix_sort(arr)
print(sorted_arr)  # 输出: [2, 24, 45, 66, 75, 90, 170, 802]

时间复杂度

  • 每一轮排序:O(n),使用计数排序对每一位进行排序。

  • 总轮数:k 轮,其中 k 是最大数字的位数。

  • 总时间复杂度:O(n * k)。


空间复杂度

  • O(n + k),需要额外的存储空间来存放计数数组和输出数组。


优缺点

  • 优点

    • 时间复杂度为 O(n * k),当 k 较小时,性能优异。

    • 稳定排序算法(相同元素的相对顺序不会改变)。

  • 缺点

    • 仅适用于整数或固定长度的字符串。

    • 当最大数字的位数 k 很大时,性能下降。


适用场景

  • 数据范围较小的整数排序。

  • 需要稳定排序算法的场景。

  • 适合外部排序(如对磁盘文件进行排序)。


代码实现

JavaScript

实例

//LSD Radix Sort
var counter = [];
function radixSort(arr, maxDigit) {
    var mod = 10;
    var dev = 1;
    for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
        for(var j = 0; j < arr.length; j++) {
            var bucket = parseInt((arr[j] % mod) / dev);
            if(counter[bucket]==null) {
                counter[bucket] = [];
            }
            counter[bucket].push(arr[j]);
        }
        var pos = 0;
        for(var j = 0; j < counter.length; j++) {
            var value = null;
            if(counter[j]!=null) {
                while ((value = counter[j].shift()) != null) {
                      arr[pos++] = value;
                }
          }
        }
    }
    return arr;
}

Java

实例

/**
 * 基数排序
 * 考虑负数的情况还可以参考: https://code.i-harness.com/zh-CN/q/e98fa9
 */

public class RadixSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int maxDigit = getMaxDigit(arr);
        return radixSort(arr, maxDigit);
    }

    /**
     * 获取最高位数
     */

    private int getMaxDigit(int[] arr) {
        int maxValue = getMaxValue(arr);
        return getNumLenght(maxValue);
    }

    private int getMaxValue(int[] arr) {
        int maxValue = arr[0];
        for (int value : arr) {
            if (maxValue < value) {
                maxValue = value;
            }
        }
        return maxValue;
    }

    protected int getNumLenght(long num) {
        if (num == 0) {
            return 1;
        }
        int lenght = 0;
        for (long temp = num; temp != 0; temp /= 10) {
            lenght++;
        }
        return lenght;
    }

    private int[] radixSort(int[] arr, int maxDigit) {
        int mod = 10;
        int dev = 1;

        for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
            // 考虑负数的情况,这里扩展一倍队列数,其中 [0-9]对应负数,[10-19]对应正数 (bucket + 10)
            int[][] counter = new int[mod * 2][0];

            for (int j = 0; j < arr.length; j++) {
                int bucket = ((arr[j] % mod) / dev) + mod;
                counter[bucket] = arrayAppend(counter[bucket], arr[j]);
            }

            int pos = 0;
            for (int[] bucket : counter) {
                for (int value : bucket) {
                    arr[pos++] = value;
                }
            }
        }

        return arr;
    }

    /**
     * 自动扩容,并保存数据
     *
     * @param arr
     * @param value
     */

    private int[] arrayAppend(int[] arr, int value) {
        arr = Arrays.copyOf(arr, arr.length + 1);
        arr[arr.length - 1] = value;
        return arr;
    }
}

PHP

实例

function radixSort($arr, $maxDigit = null)
{
    if ($maxDigit === null) {
        $maxDigit = max($arr);
    }
    $counter = [];
    for ($i = 0; $i < $maxDigit; $i++) {
        for ($j = 0; $j < count($arr); $j++) {
            preg_match_all('/\d/', (string) $arr[$j], $matches);
            $numArr = $matches[0];
            $lenTmp = count($numArr);
            $bucket = array_key_exists($lenTmp - $i - 1, $numArr)
                ? intval($numArr[$lenTmp - $i - 1])
                : 0;
            if (!array_key_exists($bucket, $counter)) {
                $counter[$bucket] = [];
            }
            $counter[$bucket][] = $arr[$j];
        }
        $pos = 0;
        for ($j = 0; $j < count($counter); $j++) {
            $value = null;
            if ($counter[$j] !== null) {
                while (($value = array_shift($counter[$j])) !== null) {
                    $arr[$pos++] = $value;
                }
          }
        }
    }

    return $arr;
}

C++

实例

int maxbit(int data[], int n) //辅助函数,求数据的最大位数
{
    int maxData = data[0];              ///< 最大数
    /// 先求出最大数,再求其位数,这样有原先依次每个数判断其位数,稍微优化点。
    for (int i = 1; i < n; ++i)
    {
        if (maxData < data[i])
            maxData = data[i];
    }
    int d = 1;
    int p = 10;
    while (maxData >= p)
    {
        //p *= 10; // Maybe overflow
        maxData /= 10;
        ++d;
    }
    return d;
/*    int d = 1; //保存最大的位数
    int p = 10;
    for(int i = 0; i < n; ++i)
    {
        while(data[i] >= p)
        {
            p *= 10;
            ++d;
        }
    }
    return d;*/

}
void radixsort(int data[], int n) //基数排序
{
    int d = maxbit(data, n);
    int *tmp = new int[n];
    int *count = new int[10]; //计数器
    int i, j, k;
    int radix = 1;
    for(i = 1; i <= d; i++) //进行d次排序
    {
        for(j = 0; j < 10; j++)
            count[j] = 0; //每次分配前清空计数器
        for(j = 0; j < n; j++)
        {
            k = (data[j] / radix) % 10; //统计每个桶中的记录数
            count[k]++;
        }
        for(j = 1; j < 10; j++)
            count[j] = count[j - 1] + count[j]; //将tmp中的位置依次分配给每个桶
        for(j = n - 1; j >= 0; j--) //将所有桶中记录依次收集到tmp中
        {
            k = (data[j] / radix) % 10;
            tmp[count[k] - 1] = data[j];
            count[k]--;
        }
        for(j = 0; j < n; j++) //将临时数组的内容复制到data中
            data[j] = tmp[j];
        radix = radix * 10;
    }
    delete []tmp;
    delete []count;
}

C

实例

#include<stdio.h>
#define MAX 20
//#define SHOWPASS
#define BASE 10

void print(int *a, int n) {
  int i;
  for (i = 0; i < n; i++) {
    printf("%d\t", a[i]);
  }
}

void radixsort(int *a, int n) {
  int i, b[MAX], m = a[0], exp = 1;

  for (i = 1; i < n; i++) {
    if (a[i] > m) {
      m = a[i];
    }
  }

  while (m / exp > 0) {
    int bucket[BASE] = { 0 };

    for (i = 0; i < n; i++) {
      bucket[(a[i] / exp) % BASE]++;
    }

    for (i = 1; i < BASE; i++) {
      bucket[i] += bucket[i - 1];
    }

    for (i = n - 1; i >= 0; i--) {
      b[--bucket[(a[i] / exp) % BASE]] = a[i];
    }

    for (i = 0; i < n; i++) {
      a[i] = b[i];
    }

    exp *= BASE;

#ifdef SHOWPASS
    printf("\nPASS   : ");
    print(a, n);
#endif
  }
}

int main() {
  int arr[MAX];
  int i, n;

  printf("Enter total elements (n <= %d) : ", MAX);
  scanf("%d", &n);
  n = n < MAX ? n : MAX;

  printf("Enter %d Elements : ", n);
  for (i = 0; i < n; i++) {
    scanf("%d", &arr[i]);
  }

  printf("\nARRAY  : ");
  print(&arr[0], n);

  radixsort(&arr[0], n);

  printf("\nSORTED : ");
  print(&arr[0], n);
  printf("\n");

  return 0;
}

Lua

实例

-- 获取表中位数
local maxBit = function (tt)
    local weight = 10;      -- 十進制
    local bit = 1;
   
    for k, v in pairs(tt) do
        while v >= weight do
            weight = weight * 10;
            bit = bit + 1;  
        end
    end
    return bit;
end
-- 基数排序
local radixSort = function (tt)
    local maxbit = maxBit(tt);

    local bucket = {};
    local temp = {};
    local radix = 1;
    for i = 1, maxbit do
        for j = 1, 10 do
            bucket[j] = 0;      --- 清空桶
        end
        for k, v in pairs(tt) do
            local remainder = math.floor((v / radix)) % 10 + 1;    
            bucket[remainder] = bucket[remainder] + 1;      -- 每個桶數量自動增加1
        end
       
        for j = 2, 10 do
            bucket[j] = bucket[j - 1] + bucket[j];  -- 每个桶的数量 = 以前桶数量和 + 自个数量
        end
        -- 按照桶的位置,排序--这个是桶式排序,必须使用倒序,因为排序方法是从小到大,顺序下来,会出现大的在小的上面清空。
        for k = #tt, 1, -1 do
            local remainder = math.floor((tt[k] / radix)) % 10 + 1;
            temp[bucket[remainder]] = tt[k];
            bucket[remainder] = bucket[remainder] - 1;
        end
        for k, v in pairs(temp) do
            tt[k] = v;
        end
        radix = radix * 10;
    end
end;

参考地址:

https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/10.radixSort.md

https://zh.wikipedia.org/wiki/%E5%9F%BA%E6%95%B0%E6%8E%92%E5%BA%8F